Tunnel effect and symmetries for non-selfadjoint operators
نویسندگان
چکیده
منابع مشابه
Tunnel effect and symmetries for non-selfadjoint operators
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and PT -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low t...
متن کاملSpectral instability for non-selfadjoint operators∗
We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.
متن کاملNon-selfadjoint Perturbations of Selfadjoint Operators in 2 Dimensions I
This is the first in a series of works devoted to small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the present work we treat the case when the classical flow of the unperturbed part is periodic and the strength ǫ of the perturbation is ≫ h (or sometimes only ≫ h2) and bounded from above by hδ for some δ > 0. We get a complete asymptotic descri...
متن کاملSpectral monodromy of non selfadjoint operators
We propose to build in this paper a combinatorial invariant, called the ”spectral monodromy” from the spectrum of a single (non-selfadjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting selfadjoint h-pseudodifferential operators, given ...
متن کاملDiophantine tori and spectral asymptotics for non-selfadjoint operators
We study spectral asymptotics for small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part possesses several invariant Lagrangian tori enjoying a Diophantine property. We get complete asymptotic expansions for all eigenvalues in certain rectangles in the complex plane in two different cases: in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journées Équations aux dérivées partielles
سال: 2013
ISSN: 0752-0360,2118-9366
DOI: 10.5802/jedp.101